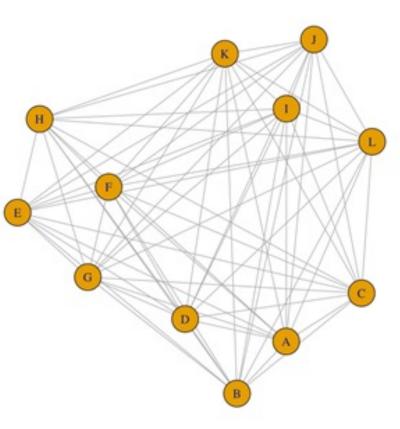
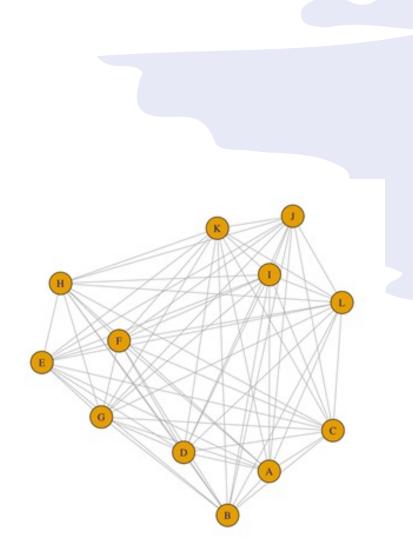

# Social Network Analysis

**CLASS I: INTRODUCTION** 

### What is this module about?

- Social Network Analysis is a field of methodology that's becoming increasingly important in the social and political sciences.
- At a basic level, it's a set of methods that allow us to study networks – of many different varieties, not just online social networks – and discover insights about the human interactions which those networks represent.


# Adamic & Glance 2004

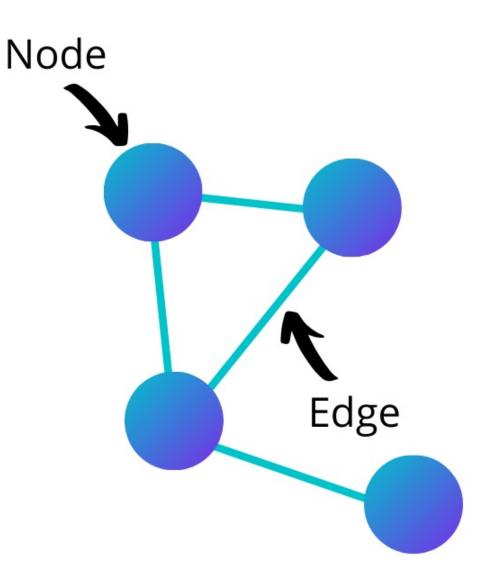



- This network graph, showing the links between Republican- and Democrataligned political blog sites in the early 2000s, became very famous.
- It is now seen as an early warning sign of **polarisation** in online political discourse.

## What is a Network?

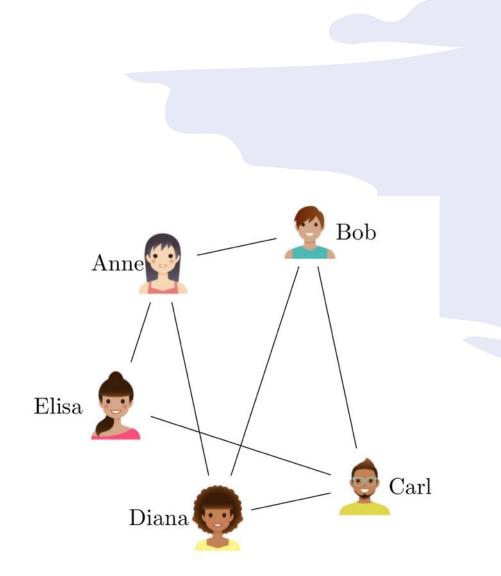
- A network is a data structure that is defined by the <u>interactions</u> between the objects being observed.
- It contains two types of information:
  - 1. Information about the objects being observed;
  - 2. Information about the interactions between them.






# Networks and Graphs

- This kind of data structure is called a graph.
- Technically, "graph" is the abstract, mathematical term for this structure (so you'll hear mathematicians talk about "graph theory" etc.) – once you create one with actual data in it, it's a **network**.

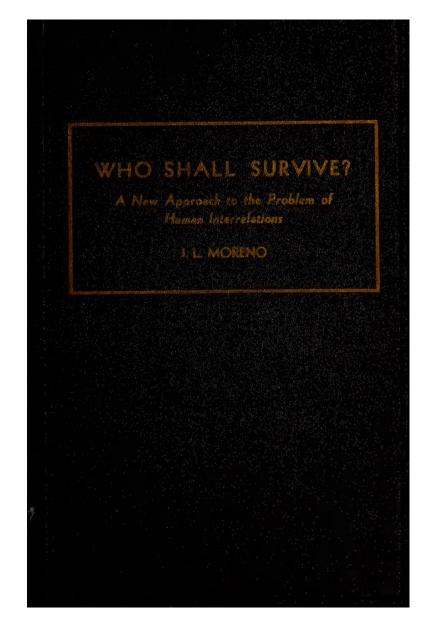

# Nodes and Edges

- A quick word on terminology...
- We've been talking about "objects" and "interactions" or "connections", but in network analysis the technical names for these features are **nodes** and edges.
- We'll discuss these more later for now, just remember the terms.



# **Graph** Theory Applications

- Graph Theory the study of interconnected networks is used to study many different kinds of networks. For example:
  - Chemists and physicists use graphs to study molecular bonds and quantum fields.
  - Biologists use graphs to analyse genetics and evolution.
  - Computer scientists use graphs to model computer networks and data flows.
  - Mapping applications use graph theory to calculate optimal transport routes.




# Social Networks

- As social scientists, we often wish to use graphs to study <u>people</u>.
  - In this case, the objects on the graph become individuals (or some representation of them, like an account on a website).
  - The interactions could be anything friendships, encounters, shared interests, financial transactions...

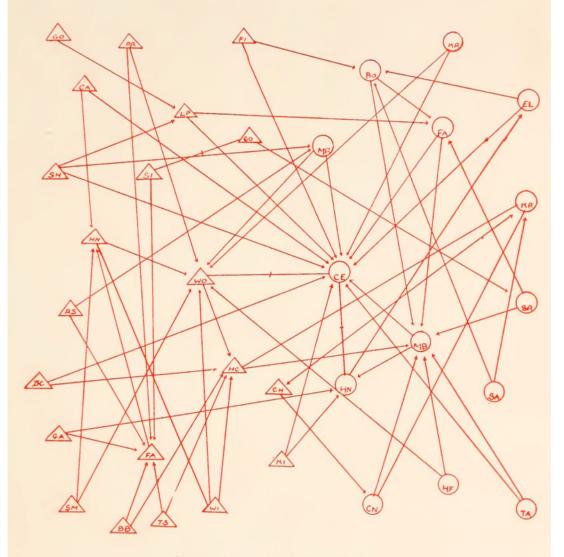
## Social Network Analysis: Origins

- When we say "social network analysis", or even just mention a "social network", you probably have a mental image of something very modern – at least something from the Internet age.
- You probably don't imagine the first book on social network analysis being written in 1934!





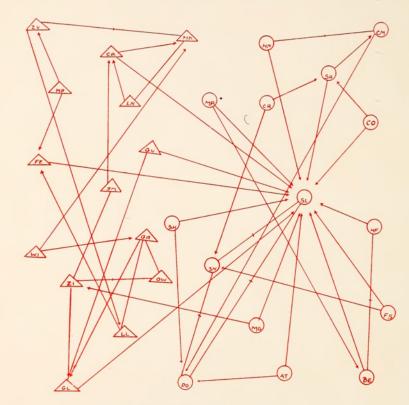
# JL Moreno's "Who Shall Survive?"


- Jacob Moreno (1889-1974) was a Romanian psychiatrist and sociologist.
- He was interested in studying human psychology in groups – believing that observing group interactions could provide insights that you'd miss if you only considered individuals.

- Working in New York in the 1930s, Moreno devised a series of experiments aiming at understanding group dynamics.
- Observing children in a schoolyard over multiple days, he saw how sub-groups would form.
  - These groups were semi-stable but also dynamic; they formed and reformed in slightly different configurations on different days.
  - The groups interacted with each other and had different types of internal dynamics.

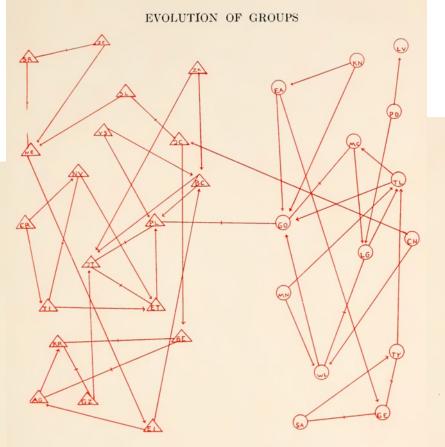


- To better understand these groups, Moreno devised an experiment.
- Each child was asked to (privately) write down the name of the two people they'd like to sit next to in class.
- When Moreno drew a graph of the resulting data, he noticed clear patterns emerging.


#### EVOLUTION OF GROUPS

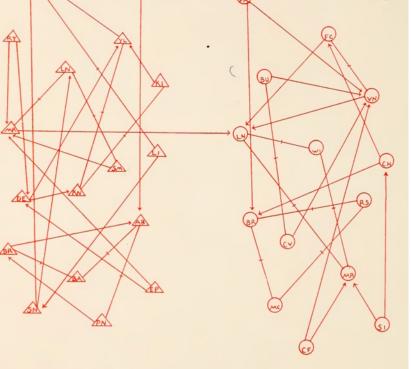


#### CLASS STRUCTURE, 1ST GRADE


21 boys and 14 girls. Unchosen, 18. GO, PR, CA, SH, FI, RS, DC, GA, SM, BB, TS, WI, KI, TA, HF, SA, SR, KR; Pairs, 3, EI-GO, WO-CE. CE-HN; Stars, 5, CE, WO, HC, FA, MB; Chains, 0; Triangles, 0; Inter-sexual Attractions, 22.

EVOLUTION OF GROUPS




CLASS STRUCTURE, 2ND GRADE

14 boys and 14 girls. Unchosen, 9, WI, KP, MG, AT, FS, CN, CR, MR, SH; Pairs, 11, ZV-MK, MK-LN, OW-ZI, GR-LL, ZI-JM, HN-CM, SL-JN, JN-PO, PO-SL, HF-BE, GL-GU; Stars, 2, SL, PO; Chains, 0; Triangles, 1, SL-JN-PO; Inter-sexual Attractions, 5.



#### CLASS STRUCTURE, 3RD GRADE

19 boys and 14 girls. Unchosen, 7, VS, CR, CH, MN, PO, KN, ZK; Pairs, 14, SR-ZC, SR-NE, SL-JC, NV-TI, PL-JT, JT-ET, KR-BE, BE-AG, RR-GZ, PL-GO, GO-MC, WL-LG, SA-GE, GE-TY; Stars, 3, GO, PL, JT; Chains, 1, ET-JT-PL-GO-MC; Triangles, 0; Inter-sexual Attractions, 3.

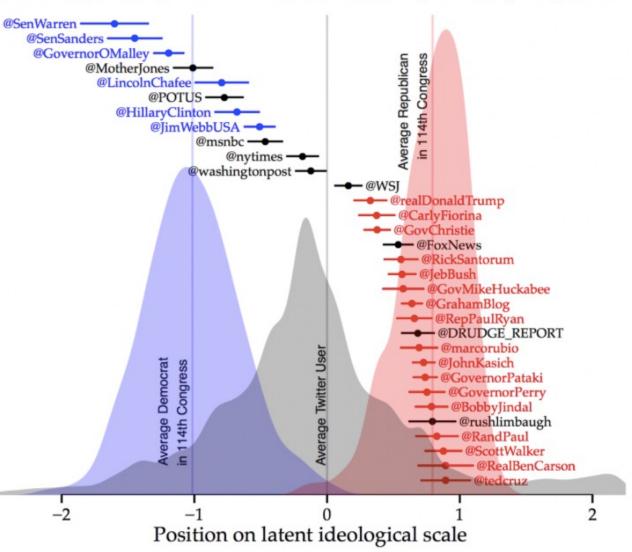


EVOLUTION OF GROUPS

#### CLASS STRUCTURE, 4TH GRADE

17 boys and 16 girls. Unchosen, 6, EP, RY, EL, FA, SI, CF; Pairs, 17, GR-SI, GR-LI, MR-LN, LN-SM, YL-KN, AB-BA, BA-BR, KI-KN, AB-PN, FC-VN, BU-CV, LN-WI, LN-MR, BR-MC, BR-RS, WI-MR, MC-RS; Stars, 2, LN, VN; Chains, 0; Triangles, 2, BR-RS-MC; LN-WI-MR; Inter-sexual Attractions, 1.

- Moreno's studies of the schoolchildren (which he also repeated in other settings with adults) had uncovered something vitally important.
- Analysing their community as a <u>network</u> allowed him to see very different roles played by different people.
- The shape and pattern of the network known as its topography – could be interpreted in order to understand the community not merely as a collection of individuals, but as a dynamic social system.


## **Online and Offline Social Networks**

- Of course, 86 years later, our use of the word "social network" has evolved; it now commonly refers to sites like Facebook,
  Twitter and Instagram.
- In social science, the definition remains broader those services are social networks, but so is a <u>town</u>, a <u>classroom</u>, a <u>parliament</u>, or any other <u>group of human beings interacting</u>.

# Barberá 2015

Twitter ideology scores of potential Democratic and Republican presidential primary candidates

- This may not look like a network but it's based on network analysis techniques.
- Barberá used the overlap between politicians' followers on social media to calculate the distances between them in a network.



Source: author's elaboration from Twitter data. Figure for The Monkey Cage/Washington Post by Pablo Barberá, NYU Data Science

## Examples of Networks

- In fact, this very broad definition helps to show why network analysis has become so important – because a great many things in the world are best explained through the study of interactions.
- Let's take a look at a few relevant examples of data around us that could be effectively represented and analysed as a network.

# Small Groups

### Parliaments

Edges: interactions between politicians (participation in events, co-sponsoring bills, etc.)

### Companies / Organisations

Edges: emails between individuals; participation in meetings or projects

### Local Communities

Edges: physical interactions; shared memberships of clubs or organisations; family relationships.

## Large Groups

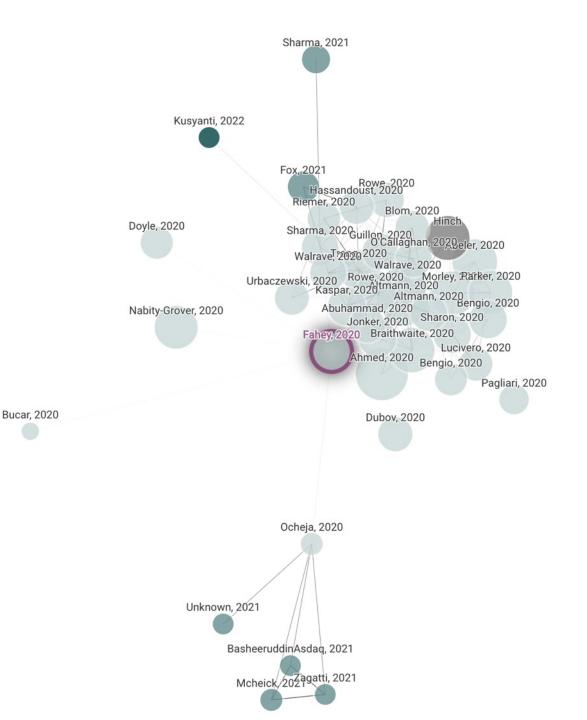
### Online Communities

Edges: shares / retweets; follow / follower relationships; mutual following of third parties

### Large Towns or Cities

Edges: living / working in the same districts; shared attendance at major events (sports etc.) or shared habits (drinking in the same bars)

#### Transport Networks


Edges: Passenger movements through the network

### Academic Literature

- Academic / scientific literature can be modelled as a network in two key ways:
  - Use <u>citations</u> as edges linking publications / papers according to the research they cite, and are cited by.
  - Use <u>co-authoring</u> as edges linking researchers according to the people they have collaborated with.

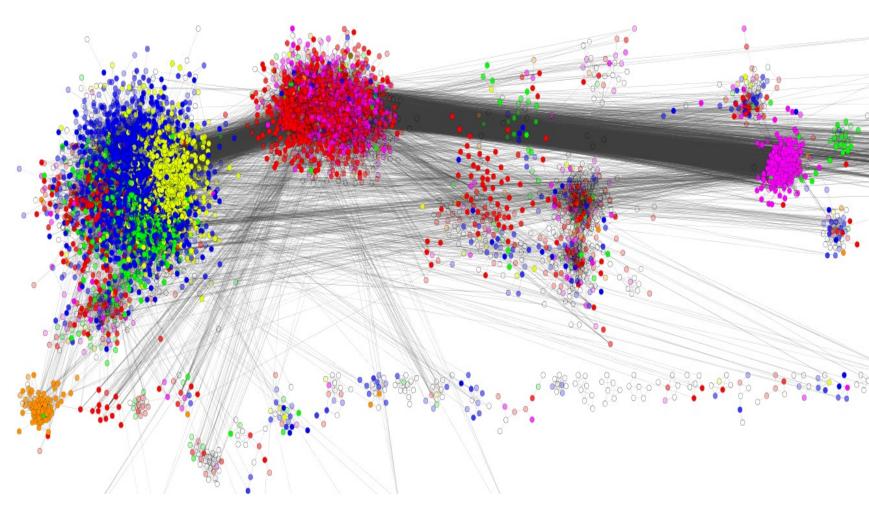
## Connected Papers

- A practical example of using the connections between academic papers to construct a network.
- connectedpapers.com
- Using citation data, this site lets you quickly visualize and identify major areas of literature around a topic, or see which papers have been especially influential.



## (Mis)information Flows

- The flow of information through a community can be traced by modelling how it propagated through a network.
- For example, by constructing a network from Twitter data, we could trace back misinformation / propaganda stories to see:
  - which accounts created the information initially;
  - which accounts were responsible for spreading it into new communities.


### International Relations

• Trade flows between countries and regions can be represented and analysed as networks.

• Similarly, network analysis can help to clarify the complex web of security treaties and relationships which bind many of the world's countries together.

# Fahey 2018

- A "home-grown" one, this time...
- This network shows the similarity between Japanese Twitter users, colourcoded by their political alignment.



## **Objectives** of this Module

- Our objective by the end of the module is to be able to:
  - Download network data from an online social network;
  - Turn that data into a network in R;
  - Analyse that network to discover what sub-groups or communities it contains, or how information spreads over it;
  - Visualise that network with a publication-quality image which shows the results of our analysis.

# But first.... Small steps.

- Online social networks are **big and complex**.
- Before we start working with that kind of data, we need to practice with smaller-scale networks.
- This is also useful for seeing how you might apply social network analysis to things other than online networks!
  - Lots of really good social science work has been done using network theory to study international relations, relationships between politicians and lobbyists, political donations...

# Course Structure

Classes marked (※) are on-demand lectures.

|                   | Week One                                          | Week Two                                      |
|-------------------|---------------------------------------------------|-----------------------------------------------|
| Monday            | Introduction Lecture                              | Creating Networks in R                        |
| Tuesday           | Network Analysis Overview (※)                     | Simple Analysis and Visualisation             |
| Wednesday         |                                                   | More Advanced Analysis (※)                    |
|                   |                                                   |                                               |
|                   | Week Three                                        | Week Four                                     |
| Monday            | Week Three<br>Building Networks from Twitter Data | Week Four<br>Visualising Large-Scale Networks |
| Monday<br>Tuesday |                                                   |                                               |

### Assessment

- There will be an assignment after each class. It won't usually be long or complex but you will have something to submit every day.
  - These assignments will make up 60% of your grade.
- In addition, there will be a longer assignment a small research project you will design and undertake. You will make a research presentation in the last class and then write up a short paper about your project; overall this will make up 40% of your grade.

## Today's Assignment

- For your first assignment, I want you to think about your own research field – this can be the field you're working on for your final thesis or just the field you're most interested in.
- What are some <u>networks</u> that exist and could be analysed in that field?
  - Don't just say "Twitter" –write briefly about the actual <u>actors</u> (i.e. nodes) you're interested in (politicians? Activists? Media outlets?) and how their interactions could be turned into a network.

### Assignment Details

- Full details of each class' assignment will be posted on my website each day <u>www.robfahey.net</u>
- The password for the class page on the site is "dapsco".
- The slides and any class materials (R scripts, data files etc.) for each class will also be available there.